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                                                        Abstract 

Classical Ekman spiral is generated by surface wind stress with constant eddy viscosity in 

homogeneous ocean. In real oceans, the eddy viscosity varies due to turbulent mixing caused by 

surface wind and buoyancy forcing. Horizontally inhomogeneous density produces vertical 

geostrophic shear which contributes to current shear that also affects the Ekman spiral. Based on 

the similar theoretical framework as the classical Ekman spiral, the baroclinic components of the 

Ekman spiral caused by the horizontally inhomogeneous density are obtained analytically with 

the varying eddy viscosity calculated from surface wind and buoyancy forcing using the K-

Profile Parameterization (KPP). Along with the three existing types of eddy viscosity due to  

pure wind forcing (zero surface buoyancy flux), such an effect is evaluated using the 

climatological monthly mean data of surface wind stress, buoyancy flux, ocean temperature and 

salinity, and mixed layer depth.    
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1. Introduction  

On the base of homogeneous density without considering waves, Ekman (1905) modeled 

turbulent mixing in upper ocean as a diffusion process similar to molecular diffusion, with an 

eddy viscosity (turbulent plus molecular), K̂  (the symbol ‘^’ indicating dimensional quantity), 

which was taken as a constant with  many orders of magnitude larger than the molecular 

viscosity. The turbulent mixing generates ageostrophic component of the upper ocean currents 

(called the Ekman spiral), decaying by an e-folding over a depth as the current vector rotate to 

the right (left) in the northern (southern) hemisphere through one radian. Several approaches may 

advance the classical Ekman theory: (a) replacing constant eddy viscosity by varying eddy 

viscosity, and relating the eddy viscosity to ocean mixing (under surface wind and/or buoyancy 

forcing), (b) including ocean wave effect, and (c) changing homogeneous to inhomogeneous 

density.  

It was recognized that the eddy viscosity K̂  is not a constant. After fitting observational 

ocean currents to the Ekman spiral (e.g., Hunkins 1966; Stacey et al. 1986; Price et al. 1987; 

Richman et al. 1987; Chereskin 1995; Lenn and Chereskin 2009), the inferred K̂  value varies 

more than an order of magnitude, from 0.054 m2 s-1 (Price et al. 1987) obtained from the field 

measurements acquired from a surface mooring set in the western Sargasso Sea (34°N, 70oW) as 

part of the Long Term Upper Ocean Study Phase 3 (LOTUS-3) during the summer of 1982,  to 

0.006 m2 s-1 (Stacey et al. 1986) obtained from the low-frequency current measurements in the 

Strait of Georgia, British Columbia.  The smaller value (0.006 m2 s-1) may be treated as a lower 

bound of the eddy viscosity (Price et al. 1987).  Recently, Lenn and Chereskin (2009) obtained a 

mean Ekman spiral from high-resolution repeat observations of upper-ocean velocity in Drake 

Passage along with the constant temperature in the Ekman layer (implying near neutral 
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stratification). The eddy viscosities inferred from Ekman theory and the time-averaged stress was 

directly estimated as   O(10-2–10-1) m2 s-1.   

The turbulent mixing in upper-ocean is also viewed as being driven by the atmospheric 

fluxes of momentum and buoyancy (heat and moisture), and the shear imposed by the ocean 

circulation, and characterized by the existence of a vertically quasi-uniform layer of temperature 

and density (i.e., mixed layer). Underneath the mixed layer, there exists another layer with a 

strong vertical gradient, such as the thermocline (in temperature) and pycnocline (in density) 

(e.g., Kraus and Turner 1967; Garwood 1977; Chu and Garwood 1991; Steger et al. 1998; Chu et 

al. 2002). Such vertical mixing generates varying upper-ocean eddy viscosity. The mixed layer is 

a key component in studies of climate and the link between the atmosphere and deep-ocean and 

directly affects the air–sea exchange of heat, momentum, and moisture (Chu 1993).  

Effect of vertical inhomogeneity of density on the Ekman spiral (i.e., stratified Ekman 

layers) has been identified by observational and modeling studies in atmospheric boundary layer 

(Lettau and Dabberdt 1970; Grachev et al. 2008) and oceanic boundary layer (McWilliams et al. 

2009; Taylor and Sarkar 2008). Ocean observations from drifter/floats show the role of 

horizontal density gradient in setting the stratification within the mixed layer. McWilliams et al. 

(2009)  computed vertical turbulent mixing within the boundary layer in a one-dimensional 

vertical column using the K-profile parameterization (KPP) scheme with surface mean wind 

stress, mean heating, and solar absorption, and idealized representations of the heat flux from the 

interior three dimensional circulation and found that there is not a single, simple paradigm for the 

upper-ocean velocity profiles in stratified Ekman layers due to the following reasons:  (a) the 

Ekman layer is compressed by stable stratification and surface heating;  (b) Ekman currents 

penetrate down into the stratified layer; (c) penetrative solar absorption deepens the mean Ekman 
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layer; (d) wind and especially buoyancy rectification effects yield a mean Ekman profile with a 

varying eddy viscosity, where the mean turbulent stress and mean shear are not aligned, whereas 

buoyancy rectification induces profile flattening. These modeling results are for the one-

dimensional ocean, i.e., no horizontal gradients of any variables including the density.  

Effect of ocean surface gravity waves on the Ekman spiral has been identified through 

interacting waves with ocean currents and wind stresses. As waves experience breaking and 

dissipation, momentum passes from waves into ocean currents. Recent studies show that the 

influence of the surface wave motion via the Stokes drift and mixing is important to 

understanding the observed Ekman current profiles in addition to wind stress, depth-varying 

eddy viscosity, and density inhomogeneity. Song and Huang (2011) used the WKB method to 

obtain the analytic solutions for modified Ekman equations including random surface wave 

effects when the eddy viscosity is gradually varying with depth. Their solution was compared 

with observational data and with the results from a large eddy simulation of the Ekman layer 

(Zikanov et al. 2003). 

However, effect of horizontally inhomogeneous density on the Ekman spiral with varying 

eddy viscosity due to vertical mixing under various surface forcing conditions has not yet been 

studied.  Since horizontally inhomogeneous density leads to non-zero vertical geostrophic shear, 

and in turn contributes to the current shear, the equations and surface boundary conditions for the 

classical Ekman model need to be modified. Such modifications may lead to a new structure of 

the Ekman spiral. The baroclinic components of the Ekman spiral are identified analytically in 

this study using the KPP and three existing (due to pure wind forcing) eddy viscosities without 

considering ocean waves. Rest of the paper is organized as follows. Section 2 introduces the 

basic equations and boundary conditions. Sections 3 and 4 describe the Obukhov length scale 
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(Obukhov 1946, Monin and Obukhov 1954), depth ratio, and KPP. Section 5 presents the 

analytical solution of the Ekman spiral in horizontally inhomogeneous ocean including analytical 

barotropic and baroclinic components due to KPP eddy viscosity. Section 6 and 7 describe the 

baroclinic effects with the KPP eddy viscosity under both surface wind and buoyancy forcing 

and with the three existing eddy viscosities under pure wind forcing.   Section 8 presents the 

conclusions.  Appendices A and B list the procedures for obtaining the analytical solutions of the 

Ekman spiral in horizontally inhomogeneous ocean with depth-dependent eddy viscosity. 

2. Ekman Layer Dynamics 

Let (x, y, z) be the zonal (positive eastward), latitudinal (positive northward), and vertical 

(positive upward with z = 0 at the ocean surface) coordinates with (i, j, k) as the corresponding 

unit vectors, and û  be the velocity vector. Following the similar steady dynamics of McWilliams 

and Huckle (2006) with modification from homogeneous to inhomogeneous density, the steady-

state horizontal momentum balance with Boussinesq approximation is given by 

                                      1 1ˆ ( ),
w

f p
h

k u ),                                   (1a)                

where w = 1025 kg m-3, is the characteristic density of seawater;  h is the ocean surface mixed 

layer depth;  /z h , is the non-dimensional vertical coordinate;  f   is the Coriolis parameter 

(depending on  the latitude);  is the vertical momentum flux due to turbulent mixing;  p is the 

pressure. It is noted that the damping for currents due to vertical radiation of inertial waves into 

the oceanic interior is neglected.  The mixed layer depth (h) can be determined from temperature 

and density profiles using subjective and objective methods (e.g., Monterey and Levitus 1997; 

Chu et al. 2002; Chu and Fan 2010, 2011). The hydrographic balance gives 

                            1

w w

p g g
z

,                                                                 (1b) 
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where ρ is the density; g is the gravitational acceleration (9.81 m s-2). 

The horizontal velocity consists of two parts: geostrophic current, [ ˆ ˆ ˆ( , )g g gu vu ], and 

ageostrophic current [ ˆ ˆ ˆ( , )E E Eu vu ] (Ekman flow),  

                                                             ˆ ˆ ˆg Eu u u .                                                 (2) 

where the geostrophic current is given by 

                                                          1ˆ g
w

f pk u ,                                         (3) 

and computed solely from the density field (Chu 1995; 2000; 2006). Differentiation of (3) with 

respect to z and use of (1b) lead to the thermal wind relation  

                                                        
ˆ g

w

g
z f

u
k .                                          (4)      

Substitution of (2)-(3) into (1a) leads to  

                                              1ˆ ( )Ef
h

k u ) .                                    (5) 

The vertical momentum flux  (i.e., turbulent Reynolds stress) is modeled by  

                                    
ˆ ˆ

( ) Kz
h

u( ) K
h

,                                                        (6a) 

where K̂ is the eddy viscosity that is non-dimensionalized by  

                                                  
*

ˆ
,       KK

h u
                                                       (6b) 

where =0.41, is the von Karmen constant. Substitution of (2) into (6a) and use of (6b) lead to  

                           *

ˆ ˆ
( ) g Ez u K

u u( ) u) uuu .                                              (7) 

The velocity ( ˆ Eu ) is nondimesionalized by  
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2
*ˆ

,     
ˆ2 (0)

E
E E

E

uV
V f K

uu ,                                              (8) 

where ˆ (0)K is the eddy viscosity evaluated at the surface. Substitution of (7) into (5) and use of 

(4) and (8) give  

                * * ,    E
E

E w

u u gf K K
h fV

uk u k S S                     (9) 

Here, the vector, S = (sx, sy), is defined by 

                                        ,    x y
w w

g gs s
x y

,                                                   (10) 

which represents the baroclinicity (i.e., 0,   0x ys s ). The ocean is barotropic if  

                                                   sx =  sy = 0.                                                                  (11) 

 The second-order differential equation (9) needs two boundary conditions. At the surface 

(σ = 0) we have 

                            2
* *

ˆ ˆ ˆ(0) a
D a a

w w

C uτ u u θ
ˆ

(0) τ                                     (12a) 

where CD is the drag coefficient; τ̂  is the surface  wind stress; ρa = 1.29 kg m-3, is the 

characteristic atmospheric density; ˆ au  is the wind near the ocean surface;   * [cos ,  sin ]θ  is 

the unit vector of the wind direction; θ is   the angle of the wind from the east; and u* is the 

ocean friction velocity,  

                                                        
1/22

*

ˆD a a

w

C
u

u
.                                          (12b) 

Evaluation of (7) and (4) at the surface leads to  

                                                   *
0

ˆ ˆ
(0) g Eu K

u u(0) uuuu  ,                           (13a) 
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0 0

ˆ g

w

gh
f

u
k .                             (13b) 

Substitution of (10), (12a), and (13b) into (13a) leads to the surface boundary condition for the 

non-dimensional Ekman flow uE,     

                                    *
*

0
(0)

(0)
E

E E

u h
K V fV

u θ k S .                             (14) 

where K(0) and S(0) represent the values of (K, S) evaluated at the surface (σ = 0). Moreover, the 

general solution of (9) contains exponentially increasing and decreasing parts with the non-

dimensional depth σ.  The exponentially increasing part is unphysical and needs to be eliminated. 

Therefore, the lower boundary condition of equation (9) is used 

                                              finite  as   Eu                                                  (15) 

to filter out the unphysical solution. In fact, the lower boundary condition (15) is also used in the 

classical Ekman spiral.  

Generally, equation (9) is not closed. One more equation for the density ρ is needed. If ρ is 

given, the second-order differential equation (9) with the boundary conditions (14) and (15) are 

well-posed. For depth-dependent eddy viscosity, (9) is an inhomogeneous linear differential 

equation with variable coefficient K.   

3. Obukhov Length (L) and Depth Ratio (λ) 

The eddy viscosity is to characterize vertical mixing, which is generated by surface wind 

stress (τ) and surface buoyancy flux (B in m2 s-3, upward positive),  

                                   ( )
(0) p

g QB g E P S
c

,                                     (16) 

where Q is the net heat flux (upward positive, W m-2); cp is the specific heat for the sea water; S 

is the surface salinity [in practical salinity units (psu)]; α  is the coefficient of thermal  expansion; 
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β is  the coefficient of haline contraction; and (E, P) are evaporation and precipitation (m s-1). 

Ocean mixed layer is generally developed by wind stirring and convection (upward surface 

buoyancy flux B). To examine dominant mixing mechanisms, the Obukhov length scale (L) and 

the depth ratio (λ) are calculated by 

                                                 
3
* (10 m),     

(10 m)
u h hL
B L L

.                   (17) 

Here, L is the depth where the wind-generated turbulence is balanced by the downward  

buoyancy flux (B < 0) due to surface warming (Q < 0) and/or freshening (P > E) and is 

comparable to the convection-generated turbulence by the upward buoyancy flux (B > 0) due to 

surface cooling (Q > 0) and/or salinization (P < E); and λ is the depth ratio.  Monthly depth ratio 

(λ) (Fig. 1) are calculated from the monthly mean global ocean (10 m)/L and ocean friction 

velocity (u*) data (1o × 1o) downloaded from 

http://iridl.ldeo.columbia.edu/SOURCES/.DASILVA/.SMD94/.climatology/ (DaSilva et al. 

1994), and  the monthly mixed layer depth (h) data downloaded from 

http://www.nodc.noaa.gov/OC5/WOA94/mix.html (Monterey and Levitus 1997).  

The depth ratio (λ) is used to determine the forcing regimes (Lombardo and Gregg 1989): 

convective regime ( 10), wind-forcing regime ( 1), and combined forcing regime 

( 10 1). The depth ratio (λ) also serves as a stability parameter (see next section). The 

calculated monthly depth ratio (λ) (Fig. 1) shows strong seasonal variability with only two 

regimes evident: wind-forcing and combined forcing regimes since almost no data with λ < -10. 

In January, the combined forcing ( 10 1) prevails most of the northern hemisphere 

including North Atlantic, North Pacific, Arabian Sea, Mediterranean Sea, and eastern tropical 

South Pacific; and the wind forcing ( 1) prevails most of the southern hemisphere. In July, 
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the combined forcing prevails in the southern hemisphere; and the wind forcing prevails in the 

northern hemisphere. 

4. KPP 

With the surface wind and buoyancy forcing, the KPP rules for the non-dimensional eddy 

viscosity (K) are given by the product of a depth-dependent non-dimensional turbulent velocity 

wx(σ) (scaled by κu*) and a dimensionless vertical shape function G(σ) (Large et al. 1994) 

                            
( , ) ( ),   if  1 0

( , )
(1, ) (1),             if >1

x

x

w G
K

w G
,                       (18) 

to represent the capability of deeper mixed layers to contain larger more effect turbulent eddies. 

It is noted that the extension of eddy viscosity K(σ, λ) from 1 0  to 0 is due to the fact 

that h was defined as the boundary layer depth in the original KPP model, which is usually 

deeper than the mixed layer depth. The shape function G(σ) is assumed to be a cubic polynomial 

(O’Brien 1970) and given by (McWilliams and Huckle 2006)  (Fig. 2) 

                       
2

2 0
0

0

( )( ) 1 ( ),
2

G H                              (19) 

where 0 0.05,  H(a) is the Heaviside step function (equal to 1 for a > 0 and 0 otherwise). As 

pointed out by McWilliams and Huckle (2006), the second term in the righthand side of (19) is 

the mathematical aesthetics and computational regularity.  

The depth dependent non-dimensional turbulent velocity scale wx(σ) is given by (Large et 

al. 1994) 

                             

1 ,   1     <0,   =0.1
( )

( , )    
1 ,                   otherwise

( )

xw                          (20) 
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Here, the function  is defined by the Monin-Obukhov similarity theory (Monin and Obukhov 

1954) such that the dimensional turbulent velocity scales equal κu* with neutral forcing (λ = 0) 

and are enhanced and reduced in unstable (λ < 0) and stable (λ > 0) conditions. It is given by 

(Large et al. 1994) 

                    1/4

1/3

1 5 ,                                0
( ) (1 16 ) ,    0,   /        0.2

(1.26 8.38 ) ,   <0,   /
m m

m

                     (21) 

For neutral forcing (λ = 0), ( ) 1.   Substitution of (19), (20), and (21) into (18) leads to an 

analytical non-dimensional KPP eddy viscosity K(σ, λ).  For a given depth σ,   increases with λ 

(Fig. 3a); and K(σ, λ) decreases with λ (Fig. 3b). Such λ-dependence of  and K(σ, λ) is quite 

smooth for λ > 0 and λ < 0, but very abrupt at  λ = 0. The - values are small for λ < 0 (e.g., 

0.05 for σ = 0.5, λ = -1) and very large for λ > 0 (e.g., 30,000  for σ = 0.5, λ =1). The K- 

values are large for λ < 0 (e.g., 7K 7 for σ = 0.5, λ = -1) and very small for λ > 0 (e.g., 510K  

for σ = 0.5, λ =1).  However, the dependence of   and K(σ, λ) on σ is quite  mild.    Substitution 

of the KPP eddy viscosity at the surface K(0, λ) into (8) leads to  

                                          
3/2

*

2 (0, )
E

uV
f h K

 

Monthly Ekman velocity scale (VE), calculated from the same data sets for the 

computation of λ, has strong seasonal variability (Fig. 4).  In January, larger VE-values (> 0.5 m 

s-1) occur in the northern hemisphere such as in the Gulf Stream, Kuroshio, equatorial regions 

(especially in the eastern Pacific), and smaller VE-values (< 0.2 m s-1) occur in the southern 

hemisphere. In July, smaller VE-values (< 0.2 m s-1) occur in  the northern hemisphere except 
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some northern tropical regions such as near the northern African coast and west Arabian Sea, and 

larger VE-values (> 0.5 m s-1) occur in the southern hemisphere. 

5. Ekman Spiral  

Substitution of (18) into (9) leads to  

* *( , ) ( , ) ,    E
E

E

u uf K K
h fV

uk u k S                          (22) 

which is an ordinary differential equation with depth-varying K(σ, λ).    The WKB method was 

used in this study to solve the differential equation (22) with the boundary conditions (14) and 

(15) to get the approximate analytical solutions uE [= (uE, vE)] (see Appendix A),   

                     ,   E E E E E Eu u u v v v ,                                                    (23)  

where  

            exp ( , ) cos ( , ) sin ( , ) ,Eu F F F                                  (24a) 

            exp ( , ) sin ( , ) cos ( , )Ev F F F                                    (24b) 

are the barotropic components of the Ekman velocity  (i.e., sx = 0, sy = 0); and  

2

exp ( , ) cos ( , ) sin ( , )

( , )( ) ( , )
( ) cos ( , ) ( , )

sgn( )
( , )( ) ( , )2 ( ) sin ( , ) ( , )

exp ( , )

E

x y
x y

x y
x y

u F F F

K s s K
s s F F

f
K s s Kf s s F F

F

0

( , )

d

F
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2

( , )( ) ( , )
( ) cos ( , ) ( , )

sgn( )
( , )( ) ( , )2 ( ) sin ( , ) ( , )

exp ( , ) ( , )

x y
x y

x y
x y

K s s K
s s F F

f dK s s Kf s s F F

F F

             

                                                                                                                                           (25)     

2

exp ( , ) sin ( , ) cos ( , )

( , )( ) ( , )
( ) cos ( , ) ( , )

sgn( )
( , )( ) ( , )2 ( ) sin ( , ) ( , )

exp ( , )

E

x y
x y

x y
x y

v F F F

K s s K
s s F F

f
K s s Kf s s F F

F

0

( , )

d

F

                                

2

( , )( ) ( , )
( ) cos ( , ) ( , )

sgn( )
( , )( ) ( , )2 ( ) sin ( , ) ( , )

exp ( , ) ( , )

x y
x y

x y
x y

K s s K
s s F F

f dK s s Kf s s F F

F F

   

                                                                                                                                             (26)                                 

are the baroclinic components of the Ekman velocity (i.e., nonzero if  0,    0x ys s ). The 

parameters are defined as follows:   

          
*

1,    if   0(0, )
,   (cos sin )sgn( ),   sgn( )  

1,  if    <0
fh f K

f f
fu

                (27) 
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2

2
0

2sgn( ) (0, ) (0) /

( , ) ( , )
cos ( , )

sgn( ) exp ( , )
( , ) ( , )

sin ( , )

y

y
y

x
x

f K s f

K s K
s F

f F d
f K s K

s F

 (28a)   

2

2
0

2sgn( ) (0, ) (0) /

( , ) ( , )
sin ( , )

sgn( ) exp ( , )
( , ) ( , )

cos ( , )

x

y
y

x
x

f K s f

K s K
s F

f F d
f K s K

s F

.                 (28b) 

                             
0

*

,
2 ,

f h dF
u K

.                                                          (29) 

Here,  sgn(f) is the sign function.   

The nondimensional barotropic ( ,E Eu v ), and baroclinic ( ,E Eu v ) components of the 

Ekman spiral are  calculated for the global oceans except the regions near the equator (5oS – 

5oN)  using (24a), (24b), (25a), (25b)  with the monthly mean global ocean  density ρ (kg m-3) 

calculated from the World Ocean Atlas 2009 temperature and salinity data (1o × 1o resolution) 

(http://www.nodc.noaa.gov/OC5/WOA09/pubwoa09.html) using the International 

Thermodynamic Equation of Seawater (http://www.teos-10.org/pubs/TEOS-10_Manual.pdf), the 

computed KPP eddy viscosity data K(σ, λ), the  ocean friction velocity (u*) data (1o × 1o) from 

http://iridl.ldeo.columbia.edu/SOURCES/.DASILVA/.SMD94/.climatology/ (DaSilva et al. 

1994),  the monthly mixed layer depth (h) data from 

http://www.nodc.noaa.gov/OC5/WOA94/mix.html (Monterey and Levitus 1997),  and the angle 
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of surface wind (θ) data, which is computed from the monthly zonal wind data downloaded from  

the website: http://iridl.ldeo.columbia.edu/SOURCES/.DASILVA/.SMD94/.climatology/.u3/ and 

the monthly meridional wind data downloaded from the website: 

http://iridl.ldeo.columbia.edu/SOURCES/.DASILVA/.SMD94/.climatology/.v3/.   

Fig. 5 shows examples of dimensional Ekman spirals ( ˆ E E EVu u ) with   (solid curve) 

and without (dashed curve) baroclinic components. The upper left panels (a), and (b) show the 

Ekman spirals at Location-1 (11oN, 159oW) (i.e., north equatorial Pacific) with large baroclinic 

components. The upper right panels (c), and (d) indicate the Ekman spirals at Location-2 (43oN, 

169oE) (i.e., northwestern Pacific mid-latitude) with small baroclinic components. Profiles of the 

horizontal density gradient ( / x , / y ) are much larger at Location-1 (lower left panels) 

than at Location-2 (lower right panels).   

6. Baroclinic Effect  

The baroclinic portion of the Ekman spiral can be effectively determined by the ratio of 

the vertical integration of baroclinic Ekman component over the Ekman velocity,   

                                       

2 2

0

2 2

0

E E

E E

u v d
M

u v d
.                                           (30) 

Horizontal distribution of M has strong seasonal and spatial variability with large M-values (> 

0.2) occurring in the tropical North Pacific Ocean, tropical Atlantic Ocean (10oN – 25oN), and 

eastern Arabian Sea with the largest value of 0.9 in the central tropical North Pacific Ocean near 

the dateline, and with small M-values (< 0.2) occurring in the southern hemisphere in January, 

and vice versa in July (Fig. 6). Comparison between Fig. 6 and Fig. 1 shows negative correlation 

between λ and M: large (small) λ corresponds to small (large) M.  Such negative correlation is 
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found in the scatter diagrams of (λ, M) for the global oceans in January (Fig. 7a) and July (Fig. 

7b) with linear regression equations, 

                                    20.0239 0.0195    (R 0.561)   for JanuaryM ,                           (31) 

                                    20.0305 0.0171    (R 0.463)   for JulyM .                                 (32) 

The two regression equations are significant on the level of 0.0005 with the numbers of paired 

data are 6945 in January (Fug. 7a) and 6940 in July (Fig. 7b).   The negative correlation between 

λ and M may be related to the increase of the KPP eddy viscosity with the decrease of λ 

especially for λ < 0.  

The baroclinicity parameter is identified by the vertical integration of the magnitude of 

horizontal s – gradient (crossing the mixed layer) scaled by f2,  

                                        2 2
2

0

1
x yb s s d

f
,                                                 (33) 

which shows  evident spatial variability and weak seasonal variability (Fig. 8). Since B is 

inversely proportional to f2, the B-value is usually large (B > 5) in low latitudes (20oS – 20oN), 

and small ( 5B ) in middle and high latitudes. It is noted that the scale factor of f2 for the 

baroclinicity parameter (B) [see (33)] (scaled by f2) is only used for searching for baroclinic 

Ekman components since ( ,E Eu v ) are inversely proportional to f2 [see (25), (26), (28a), and 

(28b)].  

The baroclinic effect on the Ekman spiral is evaluated by the correlation coefficient (R) 

between the two parameters, M and b, under the wind ( 1 and combined ( 1) forcing 

regimes in the northern and southern hemisphere (Table 1). It is found that M and b are 

positively correlated for all the situations with large R (> 0.73) for both hemispheres and months 

(January and July) under the surface wind forcing regime ( 1, with large R in the northern 
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hemisphere in January (0.77) and in the southern hemisphere in July (0.62) under the combined 

forcing regime ( 1) , and with small R in the northern hemisphere in July (0.49) and in the 

southern hemisphere in January (0.36).  

The scatter diagrams of (b, M) for the northern hemisphere (Fig. 9) and southern 

hemisphere (Fig. 10) also show the similar statistical relationships between M and b (M increase 

as B increases). Since M vanishes as b vanishes, (i.e., no baroclinic Ekman components when the 

horizontal density gradient equals zero), the linear regression equation between M and b is 

written by  

                                                    M cb ,                                                                   (34) 

where the regression coefficient c  is obtained using the least square error method. The 

regression coefficient c is always positive (Table 1). It has largest value under the combined 

forcing regime in January for the northern hemisphere (0.0498), and in July for the southern 

hemisphere (0.0370).  It has smallest value under the combined forcing regime in July for the 

northern hemisphere (0.00551) (prevailing wind forcing regime), and in January for the southern 

hemisphere (0.00932) (prevailing wind forcing regime).  Thus, the baroclinic effect is enhanced 

in the hemisphere with prevailing combined forcing regime and weakened in the hemisphere 

with prevailing wind forcing regime.  

7. Eddy Viscosity due to Pure Wind Forcing 

7.1. General Description 

Earlier studies such as in McWilliams and Huckle (2006) and Song and Huang (2011) 

assume no surface buoyancy flux (B = 0), i.e., the depth ratio  = 0 [see (17)], the depth 

dependent non-dimensional turbulent velocity scale wx(σ) equals 1 [see (20) and (21)]. Also, the 

dimensional form of the Ekman equation is used 
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ˆ 1ˆ ˆˆ ( ) ( ) ,E

Ef K z K z
z z f z

uk u k S                              (35) 

with the surface (dimensional) boundary condition, 

                                   2
* *

0

ˆˆ (0) (0)ˆˆ (0) E

z

KK u
z f

u Sθ k ,                            (36a) 

 and the lower boundary condition,  

                                         ˆ  finite  as   E zu ,                                                  (36b) 

where 

                                            2
*

ˆ  (0) 0.004 /K u f .                                                 (36c) 

With the monthly mean surface wind stress data, the ocean friction velocity *u  [using (12b)] and 

in turn the surface eddy viscosity ˆ (0)K  [using (36c)] are calculated except the equatorial region 

5oS – 5oN. Fig. 11 clearly shows strong horizontal and seasonal variations of ˆ (0)K . In January, it 

has large values (> 0.02 m2 s-1) in the western/central tropical North Pacific and Atlantic oceans 

(6oN – 25oN), medium values (0.01 – 0.02 m2 s-1) in the mid-latitudes associated with the 

Kuroshio and Gulf Stream, and small values (< 0.01 m2 s-1) in rest of the global oceans. 

However, in July, it has very  large values (> 0.03 m2 s-1) in the western Arabian Sea (related to 

the Southwest monsoon),  large values  (0.02 – 0.03 m2 s-1) in the western Bay of Bengal and the 

southern tropical Indian and Atlantic oceans (6oS – 25oS),  medium values (0.01 – 0.02 m2 s-1) in 

the southern tropical Pacific Ocean (6oS – 25oS), mid-latitude (35oS - 45oS) Indian Ocean, and 

small values  (< 0.01 m2 s-1) in rest of global oceans in July.   

The eddy viscosity ˆ ( )K z has three different types: (a) wind and depth dependent using 

the KPP, (b) wind dependent and depth independent, i.e., taking surface value ˆ (0)K for the 
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whole water column, and (c) wind and depth independent, i.e., assigning a constant value. 

Correspondingly, the solutions for the three types of eddy viscosity are represented by

(1) (2) (3)ˆ ˆ ˆ,   ,   E E Eu u u ,  

                               ( ) ( ) ( ) ( ) ( ) ( )ˆ ˆˆ ˆ ˆ ˆ,   ,    1,2,3i i i i i i
E E E E E Eu u u v v v i                          (37) 

where ( ) ( )ˆ ˆ( , )i i
E Eu v  are the components of the Ekman velocity in  barotropic ocean  [i.e., the Ekman 

solutions when (11) is satisfied]; and ( ) ( )ˆ ˆ( , )i i
E Eu v  are the baroclinic components of the Ekman 

spiral. The baroclinic effect is identified by the root-mean square (RMS) within the ocean mixed 

layer of the baroclinic components [( (1) (1)ˆ ˆ,E Eu v ), ( (2) (2)ˆ ˆ,E Eu v ), ( (3) (3)ˆ ˆ,E Eu v )],   

                           
2 2( ) ( )

1

1 ˆ ˆ( ) ( ) ,    1,2,3
J

i i
i E E

j
R u j v j i

J
                        (38) 

where j denotes the vertical level; and  J is the total number of  the vertical levels from the 

surface to the mixed layer depth.   

7.2. Wind and Depth Dependent Eddy Viscosity 

The vertically varying eddy viscosity due to the surface wind stress is given by (Song and 

Huang 2011) 

                               1 2
ˆ ˆ( ) (0)(1 )exp( )K z K z z ,                                     (39) 

where 1 2( , )  are positive constants.  Fitting (37) with the flow in the f-plane using the large-

eddy simulations (Zikanov et al. 2003) gives the following semi-empirical formula (Song and 

Huang 2011) 

                           
*

ˆ ˆ( ) (0) ( ),   ( )=(1 64.0327 )exp(4.0073 )
f z

K z K G G t t t
u

,              (40) 
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to calculate the depth-dependent eddy viscosity due to the surface wind stress. Here, ( )G t  is the 

shape function. Fig. 12 shows the dependence of ( )G t  versus t, where t is the non-dimensional 

depth, */ .t f z u  It is noted that ˆ (0)K  is inversely proportional to the magnitude of the 

Coriolis parameter |f|.  For the same ocean friction velocity u*, the lower the latitude, the higher 

the value of ˆ (0)K .    

 The Ekman velocity, (1) (1) (1)ˆ ˆ ˆ[ , ]E E Eu vu  are the approximate analytical solutions of (35) by 

the WKB method (see Appendices A and B) with the eddy viscosity ˆ ( )K z  given by (40).  The 

barotropic components are given by   

                            (1) ˆ ˆˆ exp ( ) cos ( ) sin ( ) ,Eu F z V F z V F z                             (41a) 

                            (1) ˆ ˆˆ exp ( ) sin ( ) cos ( )Ev F z V F z V F z ,                             (41b) 

where   

                               ˆ sgn( ),EV V f      
0

( )  
2 ˆ ( )z

f dF z
K

                           (42) 

The baroclinic components are given by   

   

(1)
1 1

0

0

ˆ ˆˆ exp ( ) cos ( ) sin ( )

ˆ[ (0) (0)] 2 ( ) cos ( ) ( ) exp ( ) ( )ˆ4 ( )

ˆ[ (0) (0)] 2 ( ) sin ( ) ( ) exp ( ) ( )ˆ4 ( )

[ (0) (0)] 2
ˆ4

E

x y

z

x y

z

x y

u F z V F z V F z

s s K F z F F z F d
f f K

s s K F z F F z F d
f f K

s s
f f K

ˆ ( ) cos ( ) ( ) exp ( ) ( )
( )

ˆ[ (0) (0)] 2 ( ) sin ( ) ( ) exp ( ) ( )ˆ4 ( )

z

z
x y

K F z F F z F d

s s K F z F F z F d
f f K

  (43a) 
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(1)
1 1

0

0

ˆ ˆˆ exp ( ) sin ( ) cos ( )

ˆ[ (0) (0)] 2 ( ) sin ( ) ( ) exp ( ) ( )ˆ4 ( )

ˆ[ (0) (0)] 2 ( ) cos ( ) ( ) exp ( ) ( )ˆ4 ( )

[ (0) (0)] 2
ˆ4

E

x y

z

x y

z

x y

v F z V F z V F z

s s K F z F F z F d
f f K

s s K F z F F z F d
f f K

s s
f f K

ˆ ( ) cos ( ) ( ) exp ( ) ( )
( )

ˆ[ (0) (0)] 2 ( ) sin ( ) ( ) exp ( ) ( )ˆ4 ( )

z

z
x y

K F z F F z F d

s s K F z F F z F d
f f K

   (43b) 

Here  

        

0

1

0

ˆ ˆ(0) (0) exp ( )(0) ( )ˆ cos ( )
2 ˆ2 2 ( )

ˆexp ( )(0) ( ) sin ( ) ,
ˆ2 2 ( )

y y

x

s s F zK K zV F z dz
f f zf f K z

F zs K z F z dz
zf f K z

           (44a) 

        

0

1

0

ˆ ˆexp ( )(0) (0)(0) ( )ˆ cos ( )
2 ˆ2 2 ( )

ˆ(0) exp ( ) ( ) sin ( ) .
ˆ2 2 ( )

x x

y

F zs sK K zV F z dz
f f zf f K z

s F z K z F z dz
zf f K z

             (44b) 

Fig. 13 shows the global horizontal distribution and zonal mean R1 (m s-1) in January and 

July. In January, it  has large values (> 0.2 m s-1) in the tropical North Pacific and Atlantic 

oceans (6oN – 20oN), the tropical North Indian Ocean (6oN – 10oN), the tropical South  Pacific 

and Atlantic oceans (6oS – 10oS), medium values (0.02 – 0.2 m s-1) in the mid-latitudes 

associated with the Kuroshio and Gulf Stream, south tropical Indian Ocean (6oS -30oS) and small 

values (< 0.01 m s-1) in rest of the global oceans. In July, it has large values (> 0.2 m s-1) in the 

tropical oceans (15oS  – 15oN) with a maximum value of 0.62 m s-1 in the Arabian Sea.  It 

generally decreases with the increasing latitude. In high latitudes, it is very small (< 0.01 m s-1). 
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Zonal mean R1 decreases with latitude near-exponentially in both northern and southern 

hemispheres) from 0.6 m s-1 (0.4 m s-1) at 6oN (6oS) to less than 10-3 m s-1 at high latitudes near 

60oN (60oS). The histograms and associated probability density functions (PDFs) for January and 

July (Fig. 14) show near-exponentially decreasing probability with R1 (log scale used in the 

vertical axis).  The probability of R1 larger than 0.2 m s-1 is 2.6% [=1 – P(R 0.2 m s-1) = 1 - 

0.974)] in January and 4.6% (= 1 – 0.954) in July. The probability of R1 larger than 0.1 m s-1 is 

10.0% in January and 11.5% in July. The 95th percentile is 0.173 m s-1 in January and 0.212 m s-1 

in July (also see Tables 2 and 3).   

7.3. Wind-dependent and Depth-independent Eddy Viscosity  

The eddy viscosity is given by  

                                                   ˆ ˆ( ) (0)K z K .                                                               (45) 

Substation of (45) into (42) leads to,    

                                    
2
*

3/2

ˆ 0.0082 (0)( ) ,    W
W

uz KF z D
D f f

,                                (46) 

where (40) is used; Dw is the e-folding decay scale of the  Ekman depth, which varies with the 

surface wind stress through ˆ (0)K , and latitude. For the same ocean friction velocity ( *u ), the 

lower the latitude, the higher the value of DW. The e-folding scale Dw is computed from the 

global data of ˆ (0)K  using (46). It also has evident horizontal and weak seasonal variations (Fig. 

15, equatorial region 5oS – 5oN not computed): large values (> 100 m) generally occur in sub-

tropical regions (10oN – 20oN, 10oS – 20oS) in January and July due to small Coriolis parameter. 

In the Northern Hemisphere middle and high latitudes, Dw is larger in January (50-100 m in the 

Atlantic Ocean and western Pacific Ocean) than in July (mostly less than 20 m).    In the 

Southern Hemisphere middle latitudes, zonal belts with medium values of Dw (20-50 m) appear 
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at 35oS – 50oS in the three southern oceans (Atlantic, Indian, and Pacific) in January but does not 

appear in the Southern Pacific in July. 

Substation of (46) into (41a), (41b), (43a), (43b), (44a) and (44b) leads to the barotropic 

components 

                               (2) ˆ ˆˆ exp( ) cos( ) sin( )E
W W W

z z zu V V
D D D

,                                 (47a) 

                               (2) ˆ ˆˆ exp( ) sin( ) cos( )E
W W W

z z zv V V
D D D

,                                (47b) 

and the baroclinic components  

                             (2)
2 2

ˆ ˆˆ exp( ) cos( ) sin( )E
W W W

z z zu V V
D D D

,                     (48a) 

                              (2)
2 2

ˆ ˆˆ exp( ) sin( ) cos( )E
W W W

z z zv V V
D D D

 .                   (48b)   

Here ( ˆ ˆ,V V ) are given by (42) and  

                                       2

(0)ˆ ,W yD s
V

f
 2

(0)ˆ .
2

W xD sV
f

                              (49)             

The global horizontal distribution of R2 (m s-1) (Fig. 16) is similar to that of R1 (Fig. 13) 

in both January and July with smaller values in the Gulf Stream and Kuroshio regions. 

Latitudinal decrease of zonal mean RMS with the eddy viscosity is also comparable in both 

Northern and Southern Hemispheres. The histograms and associated PDFs for January and July 

(Fig. 17) also show near-exponentially decreasing probability with R2.  For large R2 values (> 0.2 

m s-1), the probability is zero in January and 0.6% (= 1 – 0.994) in July. The probability of R2 

larger than 0.1 m s-1 is 0.28% in January and 4.7% in July. The 95th percentile is 0.089 m s-1 in 

January and 0.11 m s-1 in July. 
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7.4. Wind and Depth Independent Eddy Viscosity 

For the wind and depth independent eddy viscosity,  

                                       0
ˆ ˆ( ) constK z K .                                                   (50) 

Substitution of (50) into (46) gives  

                                       0
ˆ2

W
KD D
f

,                                                     (51) 

which is the classical Ekman depth. After replacing DW by D, (47a) and (47b) lead to the 

barotropic components ( (3) (3)ˆ ˆ,E Eu v ) and (48a) and (48b) lead to the baroclinic components 

( (3) (3)ˆ ˆ,E Eu v ) of the Ekman velocity. Here, the constant eddy viscosity 0K̂  is taken as 0.054       

m2 s-1 (Price et al. 1987).  

The global horizontal distribution of R3 (m s-1) (Fig. 18) is similar to that of R1 (Fig. 13) 

in January and July with latitudinal decrease of zonal mean RMS in the Northern and Southern 

Hemispheres. The histograms and associated PDFs for January and July (Fig. 19) also show 

near-exponentially decreasing probability with R3.  For large R3 values (> 0.2 m s-1), the 

probability is zero in January and July. The probability of R3 larger than 0.1 m s-1 is 0.1% in 

January and 1.2% in July. The 95th percentile is 0.04 m s-1 in January and 0.058 m s-1 in July. 

8. Conclusions 

Analytical solution of the Ekman spiral in real oceans is obtained with vertical 

geostrophic and ageostrophic shears linking to turbulent stress in upper oceans, under surface 

wind and buoyancy forcing using the KPP eddy viscosity. The Ekman spiral contains barotropic 

and baroclinic components. The barotropic component is similar to the classical Ekman spiral. 

The baroclinic component is caused by horizontally inhomogeneous density. The baroclinic 

component vanishes as the horizontal density gradient vanishes.  
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Climatological monthly data of global ocean mixed layer depth, Monin-Obukhov length 

scale, friction velocity, surface winds, and density profiles are used to calculate the depth ratio 

(λ), KPP eddy viscosity, the barotropic and baroclinic Ekman velocities, the baroclinicity 

parameter (B), and the proportion of the baroclinic Ekman component (M). Large baroclinic 

proportion is usually associated with the prevailing combined forcing regime such as in the 

northern (southern) hemisphere in January (July).   

Statistical analysis on the calculated global (λ, M, B) values shows significant negative 

correlation between λ and M: large (small) λ corresponds to small (large) M, and significant 

positive correlation between B and M: large (small) B corresponds to large (small) M.  The 

negative correlation between λ and M may be related to the increase of the KPP eddy viscosity 

with the decrease of λ especially for λ < 0. The positive correlation coefficient between B and M 

varies with the prevailing wind and combined forcing regimes. The baroclinic effect is enhanced 

in the hemisphere with prevailing combined forcing regime and weakened in the hemisphere 

with prevailing wind forcing regime.  

For pure wind forcing (i.e., zero surface buoyancy flux), three types of eddy viscosity 

from existing parameterization [wind and depth dependent, wind-dependent and depth-

independent, and wind and depth independent (i.e., constant eddy viscosity)] as well as the 

vertical root-mean square of the baroclinic component within the ocean mixed layer (R) of the 

analytical Ekman spiral are used to investigate the baroclinic effect. It enhances with the 

decreasing latitude and usually very evident (> 0.2 m s-1) in the tropical oceans in January and 

July, and extremely large value of 0.62 m s-1 in the Arabian Sea in July for all the cases (three 

types of eddy viscosity). In middle and high latitudes (especially in the South Hemisphere), it is 

generally very small (i.e., the classical Ekman spiral applies) except in the Gulf Stream and 
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Kuroshio regions in January.  These results are consistent with the earlier observational studies 

such as conducted in the Drake Passage (Lenn and Chereskin 2009). 

The near-exponentially decreasing probability with the vertical root-mean square of the 

baroclinic component is obtained from the histograms. The statistical characteristics show that 

the baroclinic components for the three types of eddy viscosity under pure wind forcing are all 

comparable in January and July. Near-exponentially decreasing probability with R1, R2, or R3 is 

found.  The probability of R1 larger than 0.2 m s-1 is 2.6% [=1 – P(R 0.2 m s-1) = 1 - 0.974)] in 

January and 4.6% (= 1 – 0.954) in July. The probability of R1 larger than 0.1 m s-1 is 10.0% in 

January and 11.5% in July. The 95th percentile is 0.173 m s-1 in January and 0.212 m s-1 in July 

(also see Tables 2 and 3).   

Finally, it is noted that the monthly mean density fields from the WOA-2009 temperature 

and salinity data cannot represent density fronts associated with submesoscale processes. The 

computation here is only to show the importance of horizontally inhomogeneous density on the 

Ekman spiral. Further computation is needed to verify the good approximate/analytical solutions 

again high horizontal-resolution wind and density data if they will be available.     

Appendix-A General Solutions of Eq(22) 

Let the Ekman currents (uE, vE) be represented by a complex variable ψ,  

                           ,    1E Eu iv i .                                                                  (A1) 

Substitution of (A1) into (22) leads to 

                                     
2

02

d dK dK if
d d d

,                                                             (A2) 

where 

                              
2 2

0
* 0 * 0 *

,     y x
E E

fh h hf Ks i Ks
u f u V f u V

.                       (A3) 
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The function  represents the baroclinic effect.  

The second-order differential equation (A2) needs two boundary conditions. The surface 

boundary condition (14) becomes 

                               
2

*

0 *
0 cos sin [ (0) (0)].   

(0)
| y x

E E

ud hi s is
d K V f u V

        (A4) 

The lower boundary condition of equation (A2) is given by 

                                         finite  as   .                                                               (A5) 

to guarantee a physically meaningful solution, i.e.,  cannot be infinity as . 

Eq. (A2) is a linear inhomogeneous ordinary differential equation with the depth-varying 

coefficient K(z).  Following Berger and Grisogono (1998), studying the Ekman atmospheric 

boundary layer, an approximate solution to the inhomogeneous problem    (A2) can be found 

with the variation of parameters technique, provided that an approximate solution of the 

homogeneous problem of (A2),  

                                                
2

02  0d dK dK i f
d d d

,                                                    (A6) 

exists. If two independent approximate solutions to homogeneous problem of Eq. (A6) are given 

by 1( )  and 2 ( ) , the general solution of Eq. (A2) is given by 

                                   1 1 2 2 1 1 2 2ˆ ˆ( ) ( ) ( ) ( ) ( ) ( )c c c c ,                             (A7) 

where  

                         
0

2
1

1 2 2 1

ˆ ( )
( )[ ( ) ( ) / ( ) ( ) / ]

c d
K d d d d

,                       (A8) 

                        1
2

1 2 2 1

ˆ ( )
( )[ ( ) ( ) / ( ) ( ) / ]

c d
K d d d d

.                        (A9) 
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Appendix-B The WKB Method for Solving Eq.(A6) 

 The WKB method can be used to obtain a good approximate solution of Eq. (A6) if the 

vertical variation of K(σ)  is slower than that of ( )  (Grisogono 1995),  

                                       
2

0 1 2( ...)exp S S S ,                                                        (B1) 

where  is a presumably small parameter. Substitution of (B1) into (A6) leads to a set of 

equations in terms of powers of . If K(σ) does not vary too quickly with depth, we have  

                                       1( )
1,     0,  1,  2,...

( )
n

n

S
n

S
1,                                                                  (B2) 

Solving for the first two terms S0 and S1 yields   

                                        0
0

0

(1 )
2 ( )
f dS i

K
,                                                               (B3) 

                                       1
1 (0)ln
4 ( )

KS
K

.                                                                               (B4) 

Thus, the two approximate solutions of the homogeneous equation (A4) are 

                1 2( ) ( )exp[(1 ) ( )],    ( ) ( )exp[ (1 ) ( )]A i F A i F ,                        (B5) 

where  

                                   
1/4

0

0

(0)( ) ,    ( )
( ) 2 ( )

fK dA F
K K

.                                     (B6) 

Substitution of (B5) and (B6) into (A8) and (A9) gives 

                             1
00

(1 )ˆ ( ) ( ) ( )exp (1 ) ( )
2 2 (0)

ic A i F d
f K

,                        (B7) 

                              2
0

(1 )ˆ ( ) ( ) ( )exp (1 ) ( )
2 2 (0)

ic A i F d
f K

.                         (B8) 
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Substitution of (B5) into (A7) gives 

               1 1 2 2ˆ ˆ[ ( )] ( )exp[(1 ) ( )] [ ( )] ( )exp[ (1 ) ( )]c c A i F c c A i F .             (B9) 

It is noted that F(σ) < 0 leads to   

                                            2   as  .                                                                    (B10) 

This leads to                                                 

                                                         2 0c                                                                               (B11) 

Substitution of (B9) into the surface boundary condition (A4) gives 

                       
   

*
1 2

00

(cos sin ) (0)ˆ (0) (1 ) [ (0) (0)] .
22 (0)

y x
u i K hc c i s is

f ff K                    

                         
2

0

(0)ˆ (0) (0) (0) (0) (0) .
2 x y x y

K hc V iV s s i s s
f f

(B11)  
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Table 1.  January and July correlation coefficients and number of paired data between (M, B) for 
northern and southern hemispheres under wind and combined forcing regimes.  
 

Location Statistics  January  
( 1)   

January  
( λ<-1) 

July  
( 1)    

July  
( λ<-1) 

Northern  
Hemisphere 

Number 
of Paired 
Data 

1181 1225 2120   143 

R 0.753 0.773 0.797 0.487 
c 0.00939 0.0498 0.0101 0.00551 

Southern  
Hemisphere 

Number 
of Paired 
Data 

4015  220 2573 1660 

R 0.794 0.358 0.733 0.624 
c 0.0142 0.00932 0.0134 0.037 

 
 
 
Table 2.  Statistical characteristics of the VRMA (within the ocean mixed layer) of the baroclinic 
components over the global oceans for the three types of eddy viscosity under zero surface 
buoyancy flux in January.  

 
 
 
 
 

 
 
 
Table 3.  Statistical characteristics of the VRMA (within the ocean mixed layer) of the baroclinic 
components over the global oceans for the three types of eddy viscosity under zero surface 
buoyancy flux in July.  
 

RMS Q0.5 (m/s) Q0.95 (m/s) P(R 0.02 m/s) P(R 0.1 m/s) P(R 0.2 m/s) 
 R1 0.0113 0.173 0.669 0.900 0.974 
 R2 0.00401  0.0888 0.800 0.972 1.000 
 R3 0.00107  0.0399 0.901 0.999 1.000 

RMS Q0.5 (m/s) Q0.95 (m/s) P(R 0.02 m/s) P(R 0.1 m/s) P(R 0.2 m/s) 
R1 0.00929 0.212 0.694 0.875 0.954 
R2 0.00306 0.110 0.795 0.953 0.994 
R3 0.000769 0.0575 0.883 0.988 1.000 
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Figure Captions 

 
Fig. 1. Monthly depth ratio (λ): (a) January, and (b) July.  It is noted that only two regimes are 
evident with the monthly mean data: wind-forcing and combined forcing regimes.  Here, the 
black contours are referred as λ = -1.  
 
Fig. 2. The shape  function G(σ). 
 
Fig. 3. Dependence of (a)  and (b)  K  on σ and λ for 1 0 .  
 
Fig. 4.  Monthly Ekman velocity scale (VE): (a) January, and (b) July.  
 
Fig. 5.  Examples of Ekman spirals (a) ˆ Eu , (b) ˆ Ev  at Location-1 (11oN, 159oW),  (c) ˆ ,Eu and  
(d) ˆ Ev  at Location-2 (43oN, 169oE) (upper panels) as well as corresponding horizontal density 
gradients (lower panels). It is noted that the horizontal density gradients are much stronger at 
Location-1 than Location-2.  
 
Fig. 6.  Monthly horizontal distribution of M:  (a) January, and (b) July.  
  
Fig. 7.  Scatter diagrams of (λ, M) with linear regression: (a) January, and (b) July. It is noted that  
the negative correlation between (λ, M) is significant on the level of 0.0005. 
 
Fig. 8. Monthly horizontal distribution and zonal mean of B: (a) January, and (b) July.    
 
Fig. 9. Scatter diagrams of (B, M) with linear regression for the northern hemisphere: (a) 
January, wind forcing regime ( 1, (b) January, combined forcing regime ( 1), (c) July, 
wind forcing regime ( 1, and (d) July, combined forcing regime ( 1). It is noted that the 
positive correlation between (λ, M) is significant on the level of 0.0005. 
 
Fig. 10. Scatter diagrams of (B, M) with linear regression for the southern hemisphere: (a) 
January, wind forcing regime ( 1, (b) January, combined forcing regime ( 1), (c) July, 
wind forcing regime ( 1, and (d) July, combined forcing regime ( 1). It is noted that the 
positive correlation between (λ, M) is significant on the level of 0.0005. 
 
Fig. 11.  Horizontal distribution of eddy viscosity at the ocean surface ˆ (0)K  calculated from 
monthly mean surface wind stress data (downloaded from the websites: 
http://iridl.ldeo.columbia.edu/SOURCES/.DASILVA/.SMD94/.climatology/.u3/  and  
http://iridl.ldeo.columbia.edu/SOURCES/.DASILVA/.SMD94/.climatology/.v3/ 
using (20) and (21): (a) January, and (b) July. 
 
Fig. 12.  Vertical structure function ( )G t versus t. 
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Fig. 13.  Horizontal distribution and zonal mean of vertical root-mean square of baroclinic 
components of the Ekman spiral in neutral ocean, R1 (m s-1), inside the mixed layer with wind-
dependent and depth-dependent eddy viscosity K(z):  (a), January, and (b) July.  
 
Fig. 14. Histogram and probability density function of R1 (m s-1) with wind-dependent and depth-
dependent eddy viscosity ˆ ( )K z : (a) January, and (b) July.   
 
Fig. 15. Horizontal distribution of e-folding depth (Dw) of the Ekman layer with wind-dependent 
and depth-independent eddy viscosity: (a) January, and (b) July. 
 
Fig. 16.  Horizontal distribution and zonal mean of vertical root-mean square of baroclinic 
components of the Ekman spiral in neutral ocean, R2 (m s-1), inside the mixed layer with wind-
dependent and depth-independent eddy viscosity ˆ (0)K :  (a), January, and (b) July. 
 
Fig. 17. Histogram and probability density function of R2 (m s-1) inside the mixed layer with 
wind-dependent and depth-independent eddy viscosity ˆ (0)K :  (a), January, and (b) July.   
 
Fig. 18.  Horizontal distribution and zonal mean of vertical root-mean square of baroclinic 
components of the Ekman spiral in neutral ocean, R3 (m s-1), inside the mixed layer with a 
constant eddy viscosity (0.054 m2 s-1):  (a), January, and (b) July. 
           
Fig. 19. Histogram and probability density function of R3 (m s-1) inside the mixed layer with a 
constant eddy viscosity (0.054 m2 s-1):  (a), January, and (b) July.  
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Fig. 1. Monthly depth ratio (λ): (a) January, and (b) July.  It is noted that only two regimes are 
evident with the monthly mean data: wind-forcing and combined forcing regimes.  Here, the 
black contours are referred as λ = -1.  
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                Fig. 2. The shape  function G(σ). 
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        Fig. 3. Dependence of (a)  and (b)  K  on σ and λ for 1 0 .  
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       Fig. 4.  Monthly Ekman velocity scale (VE): (a) January, and (b) July.  
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Fig. 5.  Examples of Ekman spirals (a) ˆ Eu , (b) ˆ Ev  at Location-1 (11oN, 159oW),  (c) ˆ ,Eu and  
(d) ˆ Ev  at Location-2 (43oN, 169oE) (upper panels) as well as corresponding horizontal density 
gradients (lower panels). It is noted that the horizontal density gradients are much stronger at 
Location-1 than Location-2.  
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Fig. 6.  Monthly horizontal distribution of M:  (a) January, and (b) July.  
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Fig. 7.  Scatter diagrams of (λ, M) with linear regression: (a) January, and (b) July. It is noted that  
the negative correlation between (λ, M) is significant on the level of 0.0005. 
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Fig. 8. Monthly horizontal distribution and zonal mean of B: (a) January, and (b) July.    
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Fig. 9. Scatter diagrams of (B, M) with linear regression for the northern hemisphere: (a) 
January, wind forcing regime ( 1, (b) January, combined forcing regime ( 1), (c) July, 
wind forcing regime ( 1, and (d) July, combined forcing regime ( 1). It is noted that the 
positive correlation between (λ, M) is significant on the level of 0.0005. 
  

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65



45 
 

 
 

 
Fig. 10. Scatter diagrams of (B, M) with linear regression for the southern hemisphere: (a) 
January, wind forcing regime ( 1, (b) January, combined forcing regime ( 1), (c) July, 
wind forcing regime ( 1, and (d) July, combined forcing regime ( 1). It is noted that the 
positive correlation between (λ, M) is significant on the level of 0.0005. 
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Fig. 11.  Horizontal distribution of eddy viscosity at the ocean surface ˆ (0)K  calculated from 
monthly mean surface wind stress data (downloaded from the websites: 
http://iridl.ldeo.columbia.edu/SOURCES/.DASILVA/.SMD94/.climatology/.u3/  and  
http://iridl.ldeo.columbia.edu/SOURCES/.DASILVA/.SMD94/.climatology/.v3/ 
using (20) and (21): (a) January, and (b) July. 
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  Fig. 12.  Vertical structure function ( )G t versus t. 
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Fig. 13.  Horizontal distribution and zonal mean of vertical root-mean square of baroclinic 
components of the Ekman spiral in neutral ocean, R1 (m s-1), inside the mixed layer with wind-
dependent and depth-dependent eddy viscosity K(z):  (a), January, and (b) July.  
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Fig. 14. Histogram and probability density function of R1 (m s-1) with wind-dependent and depth-
dependent eddy viscosity ˆ ( )K z : (a) January, and (b) July.   
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Fig. 15. Horizontal distribution of e-folding depth (Dw) (unit: m) of the Ekman layer with wind-
dependent and depth-independent eddy viscosity: (a) January, and (b) July. 
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Fig. 16.  Horizontal distribution and zonal mean of vertical root-mean square of baroclinic 
components of the Ekman spiral in neutral ocean, R2 (m s-1), inside the mixed layer with wind-
dependent and depth-independent eddy viscosity ˆ (0)K :  (a), January, and (b) July. 
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Fig. 17. Histogram and probability density function of R2 (m s-1) inside the mixed layer with 
wind-dependent and depth-independent eddy viscosity ˆ (0)K :  (a), January, and (b) July.   
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Fig. 18.  Horizontal distribution and zonal mean of vertical root-mean square of baroclinic 
components of the Ekman spiral in neutral ocean, R3 (m s-1), inside the mixed layer with a 
constant eddy viscosity (0.054 m2 s-1):  (a), January, and (b) July. 
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Fig. 19. Histogram and probability density function of R3 (m s-1) inside the mixed layer with a 
constant eddy viscosity (0.054 m2 s-1):  (a), January, and (b) July.  
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